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IMPACT ON RODS OF NON-LINEAR VISCOPLASTIC MATERIAL --

NUMERICAL AND APPROXIMATE SOLUTIONS -

T. C. T. Ting 2 and P. S. Symonds 8

Abstract

A numerical technique is described for the solution of
impact on finite rods in which the strain rate is assumed to
be:a function of stress and strain. Examples are given for the
strain rate function taken as a‘power of the dynamic overstress
and the results are éompared with available analytic solutions

and approximate uniform strain theory.
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1. Introduction

The behavior of compression impact specimens of material exhibiting rate
dependent plastic characteriétics is of interest in theiéesign and interpretation
of experiments for investigating dynamic‘plastic properties. Previous studies
[1], [2] have presented approaches by way of analytical solutions of the partial
differential equations describing the dynamic deformation. Analytical solutions
are possible only if the general partia; differential equations are linearized,
or if approximations are introduced so that the problem'is reduced to solving
ordinary differential equations. Since the actual behavior of structural metals
is strongly non-linear, it is necessary for a realistic treatment to includé non-
linear relations between stress, strain, an@lstrain rate, as well as irreversi-
bility, in represgnting the plastic behavior. The present paper describes a
scheme of a numerical solution suitable for general viscoplastic laws. The tech-
nique is illustrated by computations for two types of viscoplastic law. More
extensive calculations and interpretations with experiments will be given in a
compénion paper.

We consider the problem of impact on a finite rod as shown in Fig. 1.

A rigid body of mass G with initial velocity Vo parallel to the axis of the rod
strikes at the free end x = 0 of the rod. After contact, the striking mass is
assumed to stick to the end of the bar. It is assumed that the input kinetic
energy GV02/2 is much larger than the maximum elastic energy OOZAL/2E which the
rod can absorb. (Here S and E are respectively the static yield stress and the
elastic modulus of the rod; A and L are respectively the initial cross sectional
area and the length of the rod.) Hence, the elastic strains are assumed negli-
gible in comparison to plastic strains. The material is regardéd as rigid-visco-

plastic, meaning that no deformation occurs if the dynamic stress is smaller than




the static yield stress and the rate of deformation is governed by a functional
relation between strain rate, stress, and strain if the dynamic stress exceeds the
static yield stress.

We introduce the following dimensionless notation:

Table 1
o T
pDL2 o
G ooe Vo ElpDzL2
k = —— = v = == A = ——
pAL pD2L2 o} DL Oo2

wherg
X = distance along rod from impact end
T = time
L = length of rod
p = mass density of the rod material

G = mass of striking body (assumed rigid)

<

= particle velocity at X,T

v, = initial velocity of striking mass

0 = nominal compressive stress

o, = static yield stress in compression (nominal)
€ = neminal éomppessive strain

D = constant expressing viscoplastic behavior

E, = slope of strain hardening curve (tangent modulus in
plastic range)




The equations of dynamics and of continuity of velocity are as follows in the

dimensionless notation:

S, = -V,
(1)
ﬂt="V*
where a subscript denotes partial differentiation. The plastic strain rate
behavior will be expressed by means of a function F(s,n) such that>
n, = F(s,n) > 0 if s > g(n)

‘ (2a)
=0 if |s| < g(n) '

where s = g(n) is the condition for plastic flow under quasi-static loading,

with g(0). = 1. F(s,n) is assumed to obey the following conditions:

F S0 - (2b)
F(g(n), n) = 0.
The form of F which we shall consider in this analysis is

n, = (s -1-An)P if s> 1+ An

_ (3)
= 0 if |s| €14 an

where p and A are constants of the material. The power p corresponds to the non-
linearity of the viscoplastic behavior, having values in the neighborhood of 5
for several structural metals (2). The coefficient A is proportional to the slope

of the static stress-strain curve in the plastic range, this being taken as linear

for simplicity. For a more general form of F, a material without strain hardening




can be characterized by Fn = 0.

The initial and boundary conditions of the problem are:

For 0 €« x £ 1:

v(x,0) = n(x,0) =0 (4a)

s(x,0) = 1 (4b)
For 0 < t:

v(l,t) = 0 ; v(0,0) = v, - ‘ (be)

s(0,t) = - kv, (0,t) (4d)

The boundary condition at x = 0 of Eq. (4d) is used as long as nt(O,t) > 0. When
nt(O,t) < 0, there is an unloading boundary z(t) (see Fig. 2) along which nt(c,t) = 0.

Then Eq. (4d) must be replaced by

s(z,t) = - (k + c)vt(c,t). (4e)_

*

The numerical solution of Eqs. (1) and (2) subjected to conditions (4) will be
discussed in turn in the following sections for materials without strain-hardening

(A = 0) and with strain-hardening (A > 0). The condition (4b) was discussed in [1].

2. No Strain-Hardening

For materials that exhibit no appreciable strain-hardening, the strain rate

function F can be assumed independent of n. Hence, instead of Eqs. (2) we write,

=
i

G(s) >0 ifs>1

(5)
= 0 if lSlSl

where GS > 0 and G(1) = 0. Hence, in the region where plastic deformation is

occurring, Eqs. (1) and (5) reduce to

Sex " GS(S)St =0 ifs>1, (6)




This is a quasi-linear parabolic equation.

It was shown in [3] that the solution of (6) with the initial and boundary
conditions of (4) cannot have an unloading ?nitiated in the interior of a plastic
region. The proof depends on the maximum-minimum principles governing equations of
the type of Eq. (6) (see [u4]).

When Eq. (6) is replaced by a finite difference scheme for numerical calcu-
lation, one has to pay attention not only to the convergence and stability of the
finite difference equations, but also to the maximum-minimum properties of the
equations. Otherwise, physical requirements of the solution may be violated. The
maximum-minimum principles for various finite difference equations which approximate
Eq. (6) were studied in [5]. The results show that, except for the backward differ-
ence method, there is a restriction on the mesh ratio, which depends on Gs(s); in
order for the principles to hold. If we denote the mesh ratio At/(Ax)? by r, the

results of [5] show that the weak maximum-minimum principle holds if

r < Gs(s)/2 for the forward method
r < Gs(s) for the Crank-Nicolson method
any r for the backward method.

If Gs(s) is very small for certain s, the mesh ratio must be chosen inconveniently
small unless one uses the backward method. For instance, without strain-hardening,

Eq. (3) is written as

(s - 1) ifs>1

=
it

(7)

H]
o

if |s| < 1.

Hence GS(S) = p(s - l)p"l. For p > l,'Gs approaches zero as s approaches one.

Therefore, in order to use the same mesh ratio for the whole calculation, we shall

use only the backward difference method.




We shall derive the finite difference equations directly from Eqs. (1), and
represent the rod for this purpose by a model consisting of discrete mass particles
(Fig. 3). Let us divide the rod into n segments (hence Ax = 1/n) and replace the

mass of each segment by a mass particle at the center of the interval. We denote

1

s. 50 n. 3 the stress and strain respectively at the grid point x = idx, t = jAt,
3 3 ' ' ! . . :

and we let“vi 5 denote the velocity at x = (i -_%OAX, t = jAt. The strain rate will
) 2 ' , X . .

‘be written as ﬁi 3 instead of using a subscript t. Now, Egs. (1) and (5), together
3

with the boundary and initial conditions (4c)-(4e) can be written (see Fig. 3) as

follows, with r = At/(Ax)?Z:

Difference equations:

(a) Impulse-momentum, j = 1,2... (8a)
2
_ _ -n‘k _
=0 Sosj - r ( O,j Vosj_l)
3 = . - = - P— -
i - 1,2,...n: S5 4 Si-l,j - (Vi,i Vi,j—l
(b) Viscoplastic behavior, j = 0,1,2... (8b)
i=0,1,2...n: A, . =G(s, .) if s, . > 1
’ 1,3 , 1,3) >3
= 0 if s, , £1
1.7
(¢) Velocity-strain rate, j = 1,2... (8c)
i=0: v - v S f
" 1,3 0,] 2n o,j
i=1,2...n-1: v -V = - &
2o BT Vig1,5 T VLS 7 "i,3
- 1l
i=n: v = ==




Initial Conditions (j = 0) (9)

i=0 v = v 1 = 2nv_ = G(s
0,0 o’ no,o ( ,o)
= S T = 1 =0
1 1,2...n vl,O 0 nl’o
S. =1
i,o

It should be noticed that, with Egs. (8b), the unloading condition is taken into
account and Eq. (4e) is automatically satisfied.

One can eliminate Vi3 from Eqs. (8). If this is done one obtains for the

3

general case, with j = 1,2,...; i'= 1,2,...n-1;:

41,5 7 281,35 * %i-1,3

L EE

[ni,j - “i,j-lJ (10a)

[

[6(sy ;) - & )1, (10p)

Sisj'l

making use of Eq. (5), where G(si .) = 0 if [si j| < 1. Equation (10b) corresponds

£ b

to the backward finite difference form of Eq. (6). The existence and uniqueness of

the solution of S, for given S§.4-1 of Egs. (10) were shown in [5].
0 9 -

3

For given 4 5-1° Eqs. (8) can be solved by a method of successive approxi-
, !

mations for vi,j’ Si,j and ﬁi,j' By assuming an approximgte value véf; for vo,j’
. . . (o) .(o0) (o)

the first equations of Egs. (8a), (8b) and (8c) give 5o 3 g 5 and vy ] respec-

. b H bl
tively. The second equations of Egs. (8a), (8b) and (8c) then give siog, ﬁ§°§,
H] 2

and v(o?. We continue this process until v(o?, s(o?, and ﬁ(o? are obtained. If
23:] n,j n,j n,J

the starting value véo; is the correct one, then the last equation of Egs. (8c)

will be found to be satisfied. In other words, if corresponding to the assumed

v(o? we compute wgo), where

0,] ]

(o) _ () _ 1 .(0)

] n,J 2n n,j ° (11)

v

(o)
]
wise, we assume another approximation v

and find that ¥ is zero, we have obtained the solution for time t = jAt. Other-

él% and repeat the process.
2

'




Let 6u denote the error, i.e. the difference between a function u and its

(o)

approximation u s

u = u - u(o)°

Then, from Eqs. (8), one can show (cf. [5]) that

if &v 5 > 0,

2

S 2 6v ., 2 6v e € sovconas v . >0 12a
V2oV n-1,3 > %o,3 (122)
s . € 6s e £ teeeeess £ 88 . < b,
n,j n-1,j 0,]

Similarly, if év_ . < 0,
O,]

8 < 6v_ . < &v . € ceeosess SOV L. <0 (12b)
n,j n-1,j 0,]

§s . 2 8s . 2 cesesese 2068 . >0,
n,) n"l::] O,]

In other words, the absolute values of the error in the calculation of v, . and
?

Sy s increase as i increases. The errors in v, . are of the same sign. Similarly,
9 £

the errors in Ss 5 which have opposite signs to Ve 'E are of the same sign. With

2 >

the properties expressed in Eqs. (12) there is no difficulty in the process of
successive approximation.

It should be noticed that the successive approximation can be improved by
considering other properties, besides Eq. (12), of the solution. For instance, the
fact that the unloading boundary must start from x = 0 and terminate at x = 1

implies that

if Sk,j 21, Si,j > 1 for i > k.

Also, it can be shown (see [3]) that for 1 < j < N,

v. . >0 for 1= 0,1,¢eceen0
1,]




At time te = NAt all velocities and strain rates are zero, and the deformation stops.

The strains n, 3 are obtained from
3

which is essentially a backward difference expression for ﬁi,j'

For illustration, the strain rate function of Eq. (7) is taken. In the
calculations, p is taken from 1 to 5, Ax = 0.05 and At = 0,025, To show the
accuracy of the numerical calculation for this choice of mesh size, we compare the
results for k = 1, v, = 5, and p = 1 with the exact solution of the differential
equation (see [1]), as shown in Fig. 4., Note that the initial condition of the
problem for the differential equation is s(0,0) = =, while thét for the finite
difference system Egs. (9) in éhis examplé is 86,0 = 201, Neveﬁtheless, the agree-
ment for the stress di;@ribution is fairly good'at t .= O.l{ which is only four

steps from t = 0, For t > 0.4, there is practically no difference between the exact

and numerical solutions for both stress and strain in the rod. The time'of unloading

f

the numerical solution, they are 1.680 and 2.128 respectively.

to is 1.665 and the'total time of deformation t is 2.120 in the exact solution. In

The same mesh size is used in the calculations for p = 1 to 5, with the same
impact data k = 1, v, = 5. Some of the results are shown in Figs. 5 to 9, Further

discﬁssion is deferred to later sections, after the presentation of the solution

for strain-hardening.

3. Solutions for. Strain-Hardening Materials

For materials that exhibit strain-hardening, the more general strain rate
function Egs. (2) must be used. Although the system of equations cannot now be
reduced to a second order parabolic equation in s alone, we shall still use the

backward finite difference scheme to approximate the differential equation. This

is done so that the solution will exhibit various properties found for non-strain-




10

hardening materials, when the material has very small but finite strain-hardening.
We use the same model as before, Fig. 3. All of Egs. (8) are still valid

except for Egs. (8b) which must be replaced by

. . = F(s, ., n, .) if s, . > g(n, .)
1,3 ( i,3° 1,3) 4 i, 7 8N4,
‘ (8b')
= 0 if s, .| £ . .
) l 193l g(nl:])
where n, . = n, . . + n, .At. The numerical solution of Eqs. (8a), (8b') and (8c)
i,j i,j-1 i,]

by successive approximation is essentially the same as that illustrated in the

previous section. The only difference is in the calculation of ﬁi 3 by Egs. (8b')

>

)

when s 3 is known. (ni S 10 of course, is known.) Egs. (8b') for s, . > g(ni
. 2 b

, 3 i,j 3

can be written as:

'.- . = F S, = + . ,+ .o -At .
nl>3 ( 13]’ nlaj_l nlaj )

If this equation can be solved for ﬁi i explicitly, then the calculation is straight-

H

forward. Otherwise, an iteration scheme may be devised for the calculation of ﬁi 3
Bl

from s. ..
i,

The inequalities expressed in Eqs. (12) are still valid for Egs. (8a), (8b')
and (8c), in view of the conditions Egs. (2b) imposed on F. Therefore, there is no
difficulty in the solution by successive approximations of this new system of
equations, The existence and uniqueness of the solution follow automatically.

In [3], it was pointed out that the solution of the differential equation
of motion with strain rate function represented by Eqs. (2) satisfies the minimum
principle; the stress s cannot have a minimum value in the plastic region. To see
that the finite difference equations, Egqs. (8a), (8b') and (8c), do possess the
séme minimum principle, one can eliminate \ 3 from Eqs. (8a), (8b') and (8c) and

H

obtain a system of equations similar to Egs. (10b):
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si+laj B QSiaj ¥ Si"lsj

1
= 3 [F(s; )] (13a)

]3 ni’-) - F(|

J Siaj“l, ni:j—l

where i = 1,2,¢+...,0n-1. The equations for i = 0 and n are not needed. Now, by

the mean value theorem, the right-hand side of Eq. (13a) can be written as

. ., M. 2) - F(s, . . = (s, . - s, . F +(n, . -n, . F
F(Slaj, nl,]) (Sl,J'l’ nl:]'l) (Sls] sla]"l) 5 (nlaj nlyj_l) n
= (s, . -8, . F +f, . F At
(Sl,j Sl,]'l) s nls] n
= (s s. . ) F 4+ F(s, ., 1 F_ At
i,] ,J_l s ( 1:3’ la]) n
F =F (5. ., n. . F = 8. ., . .
where < S(sl’], nl,]), Fn Fn (sl,j, nlaj)
s. . =08, . + (1 - 0)s, .
Sl,] 1,7 ( )Sl,j—l
T T I I D F I I 0<6 <1,
Therefore,
F(S, .5 Mo o) = —2 [F(S. & 15 Ne & )+ (s, 4, =5, 5 ) F.1,
1,] 1,] 1-F At i,j-1 1,3-1 1,] i,j-1 S
and Eq. (13a) becomes
s 2s + s 1 [AtF F(s n ) + (s F_ ]
. . = s . . o T eeeeemee—— . ¢ . o« = 8. & .
1+1,3 1] 1-1,] P(l—fﬁAt) i,j-1, 'i,j-1 1,] i,j-1"s

(13b)
Since fs > 0, Fﬁ < 0 by Egs. (2b), Eq. (13b) satisfies the conditions of the minimum

principle as shown in Lemma II of [5]. Thus S5 .3 cannot have its minimum at an
interior point.

As an illustration, we take the strain rate function represented by Egs. (3)
with A = l.. The results for k = 1, v, = 5and p = 1 to 5 are shown in Figs. 6 to 10,

In all these calculations, the same mesh size (Ax = 0.05, At = 0.025) is used as for

the previous example.




For p = 1, the problem is linear and the analytic solution can be obtained
by usipg the Laplace transform. This is shown by the bold face lines in Fig.7B
for the solution before unloading occurs. It is seen that the differences between
the exact.ana numerical solutions are indistinguishable fof larger t.

To invéstigate the accuracy for p other than one, we consider thg example
for p = 3. When Ax is decreased, the solution does not seem to improve in any way.
For smaller At, however, the solution does depend on At as shown in Fig. 5. Here
we see that the unloading time to and the total strain n(O0, to) at the.free end vary
neérly linearly with At. For more detailed comparisons, the éolution for p = 3
with At = 0.,0125 (which is half the original intervél At = 0.025) ig shown in Figs.
6B and 7B by the dotted lines. The results are fairly good for x # 0. In general,
" the result is qualitatively satisfactory eQen for x = 0, if not éuaﬁtitatively.

The difficulty in the aécuracy of the solution at x = 0 is the fact that thé ori-
ginal differential equation has a singular initial condition while tge approximate
finite difference equation does not (and from the numerical point of view cannot)
have this kind of sihgularity.

Figures 6-12 present curves showing plots of various quantities as functions
of x or t. Figures 6-10 show results for impact conditions k = 1, vo‘z 5; while
Figs. 11 and 12 are for k = 1 and 10, with v, ranging from 0,1 to 20,

The most interesting single feature of these results is perhaps the appear-
ance of qualitative as well as quantitative contrasts between the cases A = 0
and A = 1, i.e. between a pure viscoplastic material (perfectly plastic behavior
with yield stress dependent on strain rate), and a modified form of viscoplastic
behavior in which strain hardening is considered. For example, considering final
strains plotted as functions of x, Fig. 8A (for A = 0) shows monotonically de-
creasing functions whereas in Fig. 8B (for A = 1) the curves for p 2 z show
pronounced minima; that for p = 1 monotonically increases. The curves in Figs. 11

and 12 (for a variety of k and v magnitudes) also exhibit characteristic features




13

of being concave up for A = 0 and concave down for A = 1, at the point x = 1.
This difference between the two media was proved analytically for p = 1 in [3],
and the present calculations suggest that it holds also for the non-linear
materials considered here.

The curves of Figs. 11 and 12 show final strains nf(x) in ratip to the
strains n: computed from an analysis which assumes thaf strains and stresses are
at all times uniform along the specimen rod. This simplified analysis is outlined
in the next section. It is seen that the final strains tend toward the result of
the uniform strain theory as either k or v increases, but the effect of increasing
k is particularly strong.

Further remarks on physical interpretation of these results are given in

the final section.

4, Uniform Strain Analysis

As the striking mass or impact Veloéity'isincreasai,the straing tend toward
a uniform distribufion along the rod. An approximate theory assuming uniform stress
and strain is presented here, appropriate fpr sufficienfly large k or Vo

If v(t) is the velocity of the striking mass, since all quantities are inde-

pendent of x the equations of motion and strain rate behévior are

s(t) = - kv (t)

nt(t) F(s,n) = v(t)

Eliminating s and v between these equations,

n, = F[-kntt, nl (14a)
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with the initial conditions

n(0) = 0, nt(O) = V. (1ub)

Equations (14) can be reduced to a first order equation. Let

nt=q
=49
Then Nyt = dn @
and Egs. (14) become
= dq
q = Fl-kq 3=, n] (15a)
n
q = v_when n = 0. (15b)

If Eq. (15a) can be solved for dq/dn, it is convenient to put it in the form:

%% = £f(q,n). (16)

Conventional methods of integrating first order differential equations can be
applied to Eq. (16) with initial condition (15b). For comparison with the results

of previous sections, we take F as expressed by Eq. (3). Then Eq. (16) becomes

%ﬂ-= - kg 17 (17a)
d 1+an+q’P
with the initial condition
gq=v., n=0. (17b)

f
The integration of Eq. (17) was done by electronic computer, and the values of n; have

Our object is to find the final strain n_ which is the value of n at q = 0.

been used in presenting the results of the complete solution in Figs. 11 and 12.
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Equation (17) can be solved analytically in a closed form when A = 0

with p integer or A # 0 with p

1. For A = 0 with p integral, the solution is

given in [2]. For A # 0 and p

1, the solution is

v +2 /v 2-—8u
o)

/v 2.
vo/2 \A 8u
An. + 1= (1 + v, ¥ oyl/2 : - |
H 2 a
Vo + 2 + /vo v 8u if V02 > 8y

_An; + 1= (1+ /%) exp — 2_? if VO2 = 8u (18)
, 1‘+ V2u
. o v . _ 8“ -V 2
Anf +1=(1+v_ + 2u)l/2 exp |- —_—  tan 1y e .
© T //”_""_"“; ' 2 + v
8u - v o
_ o)
if v 2 < 8y
o)
- A 2
where | = 5 kvo .

5. Discussion

In the preceding work the non-dimensional variables listed in Table 1 were
used for convenience in the computations. For physical interpretations, these héve
disadvantages of mixing physical quantities specifying the impact conditions with
those describing the material behavior. Also the quantities specifying plastic and
viscous properties are intermingled. For example, the iﬁpact daté arefspecified by
the quantities k = G/pAL and v, = VO/DL, and the parameter A = ElpDsz/oo2 is used

to specify the strain hardening, behavior. These are convenient for numerical work,
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but make it difficult to draw comparisons between different materials and impact
conditions. The following dimensionless parameters have more obvious physical

meaning and are more convenient for physical .interpretations:

Table 2
X oo/p
Independent variables: X =7 T =T T
G Yo
Impact parameters: k=——, ¢ =—>
AL o
Yo _/p
v 2 ' ev_ Vo Jo
eoz_‘];]<¢2=—o__.- TO =k¢ —___o.._o—-
f 2770 20 AL’ £ o oA L
o o
E1
Plasticity (strain hardening): B = e
o
e
Strain rate dependence: V= = o p

Note relations with previously defined
A\ X, n, t: '

2
v
- o _1 o)
V¢o = Vv, € = 5 k —
v
2 (o] v‘O
B=A\)‘ 'l'f:k—\-)—
2. - =t
vée n T "

In the new parameters of Table 2, the quantity Voo/p, with dimensions of

. ]

velocity, is a convenient reference characteristic of the material. There are
two independent parameters specifying the impact data, which can be defined.in

various ways but in any case enable one to specify the initial energy and initial

momentum of the striking mass. The most useful impact parameter is sg, which




17

represents the final strain in the specimen under the idealized conditions of

uniform strain and stress, all the energy being imagined as absorbed at the yield

o
f 1

initial kinetic energy of the striking mass, in a non-dimensional form, the energy

stress o with neither strain hardening nor rate sensitivity. Since e_ is also the

ratio R of initial energy to the maximum elastic strain energy can be written as
] . 2E o
R=——+ AL = o €¢ , (19)

A necessary condition for validity of a rigid-plastic treatment is that R >> 1;

for.the impact problem this would be also a sufficient condition. For eg of the

order of 0.05 or more, R would be roughly 100 or larger for one of the structufal

metals, and presumably a rigid-plastic treatment would apply with good accuracy.

Similarly, the parameter T; is the (non-dimensional) duration time of the

deformation; it is also the initial momentum in a non-dimensional form.

Estimates of the approximate ranges of numerical values of Voo/p and other

parameters representing material properties were given in [2] as follows:

Yo /p
E /o 2.
A )
oo(ksi) vo /o (in-sec ) =B p = vL (in.)

Mild steel| 30 6,500 6-9 L-6 25-200
Aluminum
alloy | 40 12,500 1-4 4-8 | 0.05-2
6061-T6

With these ranges in mind, the physical significance of the illustrative
cases treated in this report can be seen. Results have been given for k = 1, 10;

A = 1, 5, 205 A = 0, 1. Effects of changes of one of the impact variables k or
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e; (or ¢0), or of the material parameters v or B, can be observed if all the remaining
quantities are held constant. Fov example, suppose Vv and é have constant valués;
changes of k or of v then show the effects of éhanging impact conditions on specimens
ofka given material., Table 3 shows the numerical values of ¢o’ e?, and B aésuming

v.= 20, which correspond fo the magnitudes of k, Vs and A used in the calculations

of this report.

Table 3

. Interpretation of impact data with v = 20

€ n/v2 = n/400

B=20for A =0

B = 400 for A = 1
vO ¢0 eg

k = 1 k = 10
o 0.005 125x10"" 1.25x10'”:

1 0.05 .125x10_2’ .0125
5 0.25 .0313 0.313
20 1.0 .5 5

The results shown in Figs. 11 and 12 thus correspond to tests:on a material
of moderately strong rate.sensitivity and either no strain hardening or very largé
strain har'dening° The range of impact energiesvconsidered is foo wide to be realistic;
at the small values of Vo the con@ition R>>1 fo?.avrigid—plastic treatment could

hardly be satisfied, while at the largest values of A and k the strains are unrealis-

tically large.
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Alternatively one can take the impact conditions constant and consider the
_effects of changing material parameters., However the relation B = Av2 shows that'if
A is constant, a change in B accompanies one in v. The present calculations are
>thérefore not suitable for comparing the responses of different materials ﬁnder
constant impact conditions. Further calculation for this purpose has been carried

out, and will be presented in a éompanion report [6].
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